

Junior Balkan MO 2005
Veria, Greece

1 Find all positive integers x, y satisfying the equation

$$
9\left(x^{2}+y^{2}+1\right)+2(3 x y+2)=2005 .
$$

2 Let $A B C$ be an acute-angled triangle inscribed in a circle k. It is given that the tangent from A to the circle meets the line $B C$ at point P. Let M be the midpoint of the line segment $A P$ and R be the second intersection point of the circle k with the line $B M$. The line $P R$ meets again the circle k at point S different from R.
Prove that the lines $A P$ and $C S$ are parallel.
3 Prove that there exist
(a) 5 points in the plane so that among all the triangles with vertices among these points there are 8 right-angled ones;
(b) 64 points in the plane so that among all the triangles with vertices among these points there are at least 2005 right-angled ones.

4 Find all 3-digit positive integers $\overline{a b c}$ such that

$$
\overline{a b c}=a b c(a+b+c),
$$

where $\overline{a b c}$ is the decimal representation of the number.

